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1 Basic DEBkiss model

The model description in this section is extracted from the full DEBkiss framework [12, 8].
It is not a complete description of the framework but focusses on the post-embryonic stages
and on continuous reproduction (no reproduction buffer), as schematically shown in Figure
1. Furthermore, I include maturity maintenance here by default, and ignore details of the
feeding process (the scaled functional response f designates the food availability). The
derivations in this section (including the model in compound parameters) are presented
(in more detail) in the freely-available e-book [8]. This supporting information is meant
to be readable as a standalone description of the model. Therefore, there is some overlap
with the main text. Both the model version in compound parameters and the one in
primary parameters are implemented into Matlab using the BYOM platform: http://

www.debtox.info/byom.html (see the DEBtox2019 package).
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Figure 1: Schematic diagram of the mass flows in a juvenile/adult debkiss animal. The
parameter symbols are explained in Table 1. The node p denotes the switch at puberty
(start of reproductive investment; juvenile to adult). The other nodes represent a split of
the assimilation fluxes. Maturation is shown in grey: this flux is not followed here but
used as (implicit) sink for the flux JR before puberty is reached.

1.1 Symbols for the basic model

Set of symbols for the basic model, as relevant for this paper (subset of the symbol set for
the complete DEBkiss model).
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Symbol Explanation Dimension Sugg. value
Primary parameters

Ja
Am maximum area-specific assimilation rate ma/(l

2t) −
Jv
M volume-specific maintenance costs ma/(l

3t) −
WB0 assimilates in a single freshly-laid egg ma −
Lp volumetric length at puberty l −
yAV yield of assimilates on structure (starvation) ma/m 0.8 mg/mg (dwt)
yBA yield of egg buffer on assimilates ma/ma 0.95 mg/mg (dwt)
yV A yield of structure on assimilates (growth) m/ma 0.8 mg/mg (dwt)
κ fraction of assimilation flux for soma − 0.8

Conversions
dV dry-weight density of structure m/l3 0.1-0.2 mg/mm3

δM shape correction coefficient −
Fluxes and state variables

JA mass flux for assimilation ma/t
JJ mass flux for maturity maintenance ma/t
JM mass flux for somatic maintenance ma/t
JR mass flux to reproduction buffer ma/t
JV mass flux for structure m/t
Rc cumulative continuous reproduction #
WV mass of structural body m

Other output and compound parameters
f scaled functional response (0-1) −
L volumetric body length l
L0 initial volumetric body length l
Lm maximum volumetric body length l
LM physical body length l
LM∗ physical body length at specific stage l
rB von Bertalanffy growth rate constant 1/t
R continuous reproduction rate #/t
Rm maximum continuous reproduction rate #/t

Table 1: Explanation of symbols for the basic model, with dimensions given in mass (m
for body, ma for assimilates), length (l for organism), numbers (#), time (t). Suggested
values for the yields (apart from yAV ) based on the typical values in [16].
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1.2 Model in primary parameters

The basic model has two state variables: body dry weight WV and cumulative reproductive
output Rc. Reproduction itself is a rate, but it is easier to compare to observations when
cumulated (and treated as a state variable).

d

dt
WV = JV with WV (0) = dVL

3
0 (1)

d

dt
Rc = R with R = max

(
0,
yBA

WB0

JR

)
and Rc(0) = 0 (2)

The ‘max’ function on the reproduction rate R is needed as the reproduction flux JR may
become negative under time-varying food or stress levels.

The mass fluxes J∗ are calculated from body size expressed on the basis of volumetric
length: the cubic root of body volume. The state variable for body dry mass relates to
volumetric length as follows:

L3 =
WV

dV
(3)

The mass fluxes follow a simple set of rules. The assimilation flux is proportional to length
squared (and a scaled functional response f), both maintenance fluxes are proportional
to length cubed, but maturity maintenance JJ does not increase further after puberty
(L ≥ Lp). As an appropriate simplification, the specific maturity maintenance is related
to the specific somatic maintenance with a relationship that provides a close link between
investment in maturity and body size (and hence allows using body size as a trigger for
puberty). A fraction κ of the assimilation flux goes to the soma, from which somatic
maintenance is paid first; the remainder is used for structural growth with a certain yield
factor yV A. The 1 − κ fraction of assimilation is used for maturation (before puberty)
and reproduction (after puberty). From the mass flux allocated to reproduction, maturity
maintenance costs are paid first. In equations:

JA = fJa
AmL

2 (4)

JM = Jv
ML

3 (5)

JJ =
1− κ
κ

Jv
M min(L3, L3

p) (6)

JV = yV A(κJA − JM) (7)

JR = (1− κ)JA − JJ (if L < Lp then JR = 0) (8)

If the flux allocated to the soma (κJA) is smaller than the maintenance needs (JM), the
animal encounters starvation. In the model equations above, the growth flux JV would
become negative and the animal would shrink. In itself, shrinking is not unrealistic, but
the way in which the animal shrinks, if we simply follow the equations specified above,
violates basic thermodynamics. The assimilate flux available for growth (κJA − JM) is
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translated into structural biomass with an efficiency yV A that is smaller than one (in
a chemical transformation there will always be overhead costs). Simply allowing this
equation to become negative implies that structure is burnt to pay maintenance but that
the overhead costs magically become available again to cover the maintenance needs as
well (i.e., the yield of assimilates on burning structure would be larger than one). A
separate issue is that it is biologically not very realistic for an animal to burn its structure
at the first sign of starvation. It seems more likely that resources will be diverted from
maturation/reproduction (the 1 − κ flux) to make sure maintenance needs are paid. A
simple starvation module would thus consist of two stages. In the first stage, the total
assimilation flux JA is enough to pay somatic maintenance costs, so the 1− κ flux can be
reduced (leading to a reduction or even a halt of reproduction). In the second stage, even
the complete flux JA is insufficient to pay somatic maintenance costs, and the animal needs
to shrink (using structure to cover somatic maintenance needs). In equations:

JA ≥ JM : JV = 0, and for adults JR = max(0, JA − JM − JJ) (9)

JA < JM : JV = (JA − JM)/yAV and JR = 0 (10)

Note that shrinking is governed by a new yield factor yAV that is smaller than one. This
ensures that 1 mg of structure yields < 1 mg of assimilates to be used for maintenance.

The 1 − κ flux is not only used for reproduction, but also for maturity-maintenance
costs. The present formulation assumes that maturity maintenance is paid for as long as
possible from the 1 − κ flux, at the expense of reproduction. However, when the 1 − κ
flux is insufficient to pay maturity maintenance, this flux can be reduced, and I ignore the
potential consequences here. For juveniles, the 1 − κ flux is used for maturation, which
is not explicitly followed in this simplified model. Here, I assume that the investment in
maturation can be reduced to pay somatic maintenance costs, without further consequences
(e.g., Lp is unaffected). The extent to which this holds in reality remains to be investigated.

In the real world, starvation responses (and recovery after starvation) can be consider-
ably more complex. For example, animals may be able to reduce their maintenance costs
to some degree, or use structure to continue fuelling reproduction. Furthermore, I focussed
on continuous reproduction, and thereby excluded a reproduction buffer. Such a buffer
may easily be used to fuel maintenance needs under starvation.1 However, the present set
of rules provides a good starting point.

In many cases, it is not the body dry mass WV that is measured in ecotoxicity test
but some practical length measure (e.g., for Daphnia the distance between the eye and the
base of the spike). Such a physical length measure LM can be related to the state variable
WV by using the dry-mass density dV and a shape-correction coefficient δM:

LM =
L

δM
where L3 =

WV

dV
(11)

1For example, the results of [18] indicate that lipid droplets in Daphnia magna play the role of a
reproduction buffer. Therefore, starvation time in adults depends on their position in the moult cycle at
the start of starvation.
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These two additional conversion parameters are species specific (and the shape corrector
also depends on the type of length measure taken).

1.3 Model in compound parameters

The basic model, as presented in the previous section, uses primary parameters: param-
eters that are directly linked to a metabolic process. Such a direct link has advantages,
for example when we want to apply a stressor on a process. However, there are also dis-
advantages. Firstly, the primary parameters are rather abstract, and their absolute value
difficult to interpret. This also makes it difficult for users to come up with starting values
for a fit, or to spot errors in the model output. Secondly, the model parameters are affected
by the choice of the conversion factors δM and dV . For many organisms, it will be tough
to define these factors in a satisfactory manner. For daphnids, for example, this would
require measurements of animal dry and wet weight, without contributions from eggs or
reproduction buffer (we need values for structural biomass only). The e-book [8] includes
an attempt to provide reasonable estimates for Daphnia magna.

Fortunately, the value of these conversion factors is mainly relevant for the absolute
value of the primary parameters, and not for model behaviour (with some notable excep-
tions). Therefore, it is possible to rewrite the model using compound parameters (easy-to-
understand parameters that are themselves functions of primary ones). This trick underlies
the original DEBtox models [15, 14, 2], but here I apply it to DEBkiss as well (which is
simpler than for the original DEBtox models, which was derived from standard DEB with
reserve compartment).

To derive an equation for changes in body length (dL/dt), we have to fill in the growth
equation (Eq. 1) with the fluxes JV , JA and JM (note that L3 = WV /dV and that I apply
the chain rule for differentation):

d

dt
(dVL

3) = 3dVL
2 d

dt
L = yV A

(
κfJa

AmL
2 − Jv

ML
3
)

(12)

d

dt
L =

yV A

3dV
Jv
M

(
fκ
Ja
Am

Jv
M

− L
)

(13)

This equation takes the form of the traditional von Bertalanffy growth equation. When
all parameters are constant, the von Bertalanffy curve results. Therefore, we can replace
the two groups of primary parameters with more practical compound ones: the maximum
length (Lm) and the growth rate constant (rB):

d

dt
L = rB(fLm − L) (14)

Lm = κ
Ja
Am

Jv
M

and rB =
yV A

3dV
Jv
M (15)

We can similarly fill in the equation for the continuous reproduction rate with the respective
fluxes:
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R =
yBA

WB0

(
(1− κ)fJa

AmL
2 − 1− κ

κ
Jv
ML

3
p

)
(16)

=
yBA

WB0

1− κ
κ

Jv
M

(
κf
Ja
Am

Jv
M

L2 − L3
p

)
(17)

=
yBA

WB0

1− κ
κ

Jv
M

(
fLmL

2 − L3
p

)
(18)

Next, we can express the actual reproduction rate as a fraction of the maximum reproduc-
tion rate (at maximum food and at maximum body size), which results in an equation in
compound parameters:

Rm =
yBA

WB0

1− κ
κ

Jv
M

(
LmL

2
m − L3

p

)
(19)

R = Rm

fLmL
2 − L3

p

L3
m − L3

p

(20)

Four primary parameters are thus absorbed in the compound parameter Rm.
The total model in compound parameters is thus extremely compact (excluding star-

vation for the moment):

d

dt
L = rB(fLm − L) with L(0) = L0 (21)

R = max

(
0, Rm

fLmL
2 − L3

p

L3
m − L3

p

)
if L < Lp then R = 0 (22)

d

dt
Rc = R with Rc(0) = 0 (23)

Note that L was so far used for volumetric length. However, we can easily see that any
constant shape-correction factor on the length measures will drop out. Therefore, we can
use these equations in unmodified form with other length measures (e.g., total body length)
as long as we use that measure consistently in the model, and as long as LM is always
proportional to L (i.e., no changes in shape).
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2 Toxicity

Most of these derivations (including the model in compound parameters) have been pub-
lished in the e-book [8] (version 2.0). What is new in this contribution is the configuration
of damage and the physiological mode of action in a flexible manner (using a vector with
switches), and the consistent starvation module (Section 3). Furthermore, the presentation
here is more streamlined than in the e-book, due to focus on application in ecotoxicology,
and due to the constraints presented at the start of Section 1. This facilitates practical
application and implementation into software.

2.1 Symbols for the toxicity module

Additional symbols used in this chapter are collected in Table 2. I will focus on aquatic
organisms, and exposure through a water phase. However, these models can also be used
(possibly requiring some modifications) for other exposure situations. Note that the sym-
bols used here differ slightly from those in the main text, where the superscripts w (to
indicate parameters that are referenced to water) and m (rate constant referenced to max-
imum size) were removed for readability. Here, that extra detail is needed to also present
the full model, which uses damage referenced to structure (and hence receives a superscript
V ).

2.2 Toxicokinetics and damage

The classical DEBtox model starts with the one-compartment model for toxicokinetics
(TK) and adds impact of changes in size by growth dilution (and ‘concentration’ of the
body residue when the animals shrink) and by changes in the surface:volume ratio (as
chemicals have to be taken up through a surface area of the body). This leads to the
following equation for TK:

d

dt
CV = kme

Lm

L
(KV wCw − CV )− CV

3

L

d

dt
L (24)

The elimination rate is scaled with the surface:volume ratio in such a way that kme has the
interpretation of the elimination rate at the maximum size. The last term is dilution by
growth, expressed on length basis. This equation is subsequently turned into a scaled TK
equation by dividing both sides of the ODE by the bioconcentration factor (KV w):

d

dt
Cw

V = kme
Lm

L
(Cw − Cw

V )− Cw
V

3

L

d

dt
L (25)

The scaled internal concentration Cw
V is proportional to the true internal conctration CV ,

but requires no knowledge of the bioconcentration factor. The scaled internal concentration
has the dimension of an external concentration (hence the suberscript w).

In classical DEBtox formulations, Cw
V is directly linked to the toxic effect, which (im-

plicitly) assumes that any damage dynamics would be fast. We could easily add a simple,
scaled, first-order damage dynamics to the unscaled TK equation to derive the equivalent
of the ‘full’ model as used for survival modelling in GUTS [9]:
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Symbol Explanation Dimension Sugg. value
bwb effect strength energy budget, ref. water l3e/mq −
bws effect strength survival, ref. water l3e/mq/t −
CV internal concentration in organism mq/l

3 −
Cw

V scaled internal concentration, ref. water mq/l
3
e −

Cw dissolved concentration in water mq/l
3
e −

DV damage level, referenced to structure mq/l
3 −

Dw damage level, referenced to water mq/l
3
e −

FBV egg dry weight relative to structural dry weight ma/m −
h hazard rate due to toxic stress 1/t −
hb background hazard rate 1/t −
kmd dominant rate constant (in fully-grown adult) 1/t −
kme elimination rate constant (in fully-grown adult) 1/t −
kr rate constant for damage repair 1/t −
KRV partition coeff. repro buffer-structure m/ma 1
KV w partition coeff. structure-water l3e/m −
S vector with switches to configure pMoA − −
s stress level on metabolic processes − −
s∗ stress level on specific metabolic process − −
yp product of yield coeffs. for growth and shrinking − 0.64
X vector with switches to configure damage eq. − −
x∗ feedback factor for specific process − or 1/t −
zwb threshold energy budget, ref. water mq/l

3
e −

zws threshold survival, ref. water mq/l
3
e −

Table 2: Explanation of additional symbols for the toxicity module, with dimensions given
in mass (m for body dwt., ma for assimilates dwt., and mq for chemical mass), length (le
for environment, l for organism), time (t).

d

dt
CV = kme

Lm

L
(KV wCw − CV )− CV

3

L

d

dt
L (26)

d

dt
DV = kr(CV −DV ) (27)

Note that I here assume that damage is not diluted by growth (though this could easily be
added). Damage is scaled with the (unknown) partition coefficient between structure and
damage, which leaves DV with the dimension of an internal concentration.

The effect of reproduction on TK has so far been ignored in DEBtox models. However,
reproduction will affect TK when a toxicant is transferred to the offspring. This can be
corrected by adding an additional factor to the TK equation:
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d

dt
CV = kme

Lm

L
(KV wCw − CV )− CV

3

L

d

dt
L− CVR FBVKRV (28)

d

dt
DV = kr(CV −DV ) (29)

The last term in the ODE for CV covers losses due to reproduction. This introduces two new
parameters: the egg dry weight as fraction of the total body dry weight (WB0/WV = FBV ,
which we, as an approximation, may treat as a species-specific constant) and the partition
coefficient between egg material and structure (KRV , for which we might use 1 as a default).

This set of equations represents a very reasonable model for TK and damage dynamics.
However, its application requires information on body residues, which is usually missing
in ecotoxicity testing. Of course, a scaled TK equation can be linked to a scaled damage
equation, but this requires two rate constants (kme and kr) to be estimated from the toxicity
data, which is usually impossible.

A more practical approach is to follow the use of ‘reduced models’ as defined for GUTS
(see [9]). In reduced models, TK and damage dynamics are combined into a single one-
compartment equation for scaled damage. This is useful for situations where body residues
are not determined, which is the general situation for ecotoxicological applications. The
scaled damage thus forms a one-compartment representation of an essentially two-or-more
compartment system. When damage repair is very fast, the dynamics of scaled damage
will be dominated by TK, and hence the scaled damage over time represents the kinetics
of the body residue (of the parent compound or a relevant metabolite). When TK is very
fast, the reduced model represents damage dynamics.

Application of reduced models in DEB-based applications is less straightforward than
in GUTS as the animals are growing and reproducing (things that can generally be ignored
for application to survival modelling). Growth and reproduction will affect TK, but their
effects on damage dynamics are less obvious. Damage repair is unlikely to relate to the
surface:volume ratio, damage is unlikely to be eliminated through reproduction, and may
or may not be diluted by growth. Since we, a priori, will usually not be in a situation
where we know whether TK or damage dynamics dominate, this induces uncertainty about
which feedback processes to include into the reduced model. Furthermore, the situation
becomes more complex when TK is dominated by biotransformation rates, as such rates
are unlikely to depend on the surface:volume ratio, and may affect only the uptake or only
the elimination of a compound.

The solution to this conundrum is to define a configurable module for scaled damage
dynamics as follows:

d

dt
Dw = kmd (xuCw − xeDw)− (xG + xR)Dw (30)

What is calculated in the ‘reduced model’ is scaled damage, referenced to the external
concentration (here assumed to be water, hence the superscript w). Scaled damage is
directly calculated from the external concentration, and also has the units of the external
concentration.
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Four feedback factors are included which cover the various possible feedbacks. The
first two factors (xu and xe) govern the scaling of the dominant rate constant with the
surface:volume ratio. Two factors are used such that the scaling can also be applied on
uptake or elimination only (instead of always on both, which was forced in Eq. 25). Scaling
only one of these processes may be useful for cases where a compound is transformed. We
can think of a situation where a chemical is taken up through a surface and ‘eliminated’
by biotransformation to a non-toxic metabolite. In that case, only uptake scales with the
surface area. Conversely, we could have the situation where a toxic metabolite is formed
by biotransformation, but eliminated passively through a surface area.

Each of the factors in Eq. 30 requires, when it is relevant for the overall dynamics,
a specific value that will change over time. A practical way to implement that is with a
vector X, containing four switches to set a feedback process on or off. This vector can be
turned into values for x∗ in the following manner:

[xu, xe, xG, xR] = X ◦
[
Lm

L
,
Lm

L
,

3

L

d

dt
L,R FBVKRV

]
(31)

xu → max(1, xu) xe → max(1, xe) (32)

The vector X is multiplied element-wise with a vector of feedback factors. Comparing Eq.
30 with Eq. 28 clarifies how this structure works. The ‘max’ operators on xu and xe are
needed to make these factors 1 when their corresponding switch is set to zero. The various
switches can be set to zero or one to exclude or include a particular process in the reduced
model. The classical DEBtox equation results for X = [1, 1, 1, 0].

TK/damage representation X
Fast damage repair
Classical DEBtox (no losses with repro) [1,1,1,0]
Non-transformed, losses with repro [1,1,1,1]
Activated chemical, no losses with repro [0,1,1,0]
Detoxified chemical, losses with repro [1,0,1,1]
Slow damage repair
Damage is diluted by growth [0,0,1,0]
Damage is not diluted by growth [0,0,0,0]

Table 3: Some example settings for the vector with switches X in the reduced damage
model.

In this document, I explicitly want to include the possibility of starvation, including
shrinking (burning structure to pay somatic maintenance costs). For the model in primary
parameters, a starvation strategy was already presented in Section 1.2; for the model in
compound parameters, it will be presented in Section 3. The situation of shrinking re-
quires a closer look at growth dilution. When the animal decreases in size, the concentra-
tion/density of the chemical/damage will increase. When the toxicant affects assimilation
or maintenance, this can easily lead to a positive feedback loop: shrinking increases the
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damage density, which increases the toxic effect, which leads to more shrinking, increasing
damage density even further. Whether this is realistic is, at the moment, unclear. How-
ever, it is good to realise that the model can show this runaway behaviour, in its current
formulation.

2.3 Modes of action and stress factors

Scaled damage Dw needs to be linked to one or more metabolic processes.2 To this end,
I follow the classical DEBtox approach and define a linear-with-threshold relationship
between the property that drives the effect (here: damage) and a primary parameter of
the model. First, we define a linear stress factor:

s = bwb max(0, Dw − zwb ) (33)

The stress factor s is zero when damage is below the threshold, and increases linearly when
damage is above. The original DEBtox model did not use an ‘effect strength’ bwb , but rather
the reciprocal (cT = 1/bwb ). This is a matter of taste, but the use of an effect strength is
consistent with the killing rate as used in GUTS models. Note that zwb has the unit of an
external concentration (hence the superscript w), and bwb has the units of the reciprocal of
external concentration.

In principle, any primary DEB parameter can be affected by a chemical. However, it
is practical to focus on four metabolic processes: assimilation, maintenance, growth and
reproduction. Table 4 shows how the stress affects these parameters, using subscripts to
s for assimilation (A), somatic plus maturity maintenance (M), growth costs (G), and
reproduction costs (R). The functional form by which the stress function s affects the
parameter follows the tradition in DEBtox models: multiplication with 1 − s or 1 + s, or
division by 1 + s. There are no strong theoretical reasons to select a certain relationship;
here, I therefore just follow the traditional selection in DEBtox models [15]. In practice,
it is unlikely that the experimental data are strong enough to distinguish between various
functional forms. However, it is good to stress that there is freedom here to try different
forms (e.g., using Ja

Am/(1 + s) for assimilation, as proposed by [17]).

Target process Target parameter(s) Parameter under stress
Assimilation or feeding Ja

Am Ja
Am(1− sA)

Maintenance costs Jv
M and Jv

J Jv
M(1 + sM) and Jv

J (1 + sM)
Growth costs yV A yV A/(1 + sG)
Reproduction costs yBA yBA/(1 + sR)

Table 4: Stress functions for processes that can be affected by a toxicant. The physiological
mode of action (pMoA) is made up of one or more of these affected processes.

This selection of affected processes generally works well [1], although in several cases
combinations are deemed appropriate (e.g., costs for growth and costs for reproduction).

2At this point, I assume that the reduced model is used, otherwise superscript V would be used on D,
z∗ and b∗.
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The target process ‘maintenance costs’ applies the same stress factor to both somatic and
maturity maintenance costs. This is done to preserve the relationship between investment
in maturity and structural body size (which also underlies the specific choice for the matu-
rity maintenance costs, see Section 1.2). For the same reason, the target process ‘growth
costs’ should be linked to the ‘costs for maturation’. Since maturity is not followed as a
state variable in the simplest version of DEBkiss, there is no need to make this assumption
explicit. When Lp is found to shift with toxicant stress, it may be useful follow matu-
rity explicitly (in conjunction with the model in primary parameters, see Section 5), and
consider effects on maturation costs as well.

For the model formulation, I will use more specific stress factors with a subscript for
each metabolic process. To facilitate flexible implementation, especially to allow a pMoA
to affect multiple processes, I define a vector S with switches to configure the pMoA. This
is equivalent to the vector X to configure the damage equation through Eq. 31. Specific
stress factors s∗ follow from the vector S and the value for s from Eq. 33:

[sA, sM , sG, sR] = s× S (34)

sA → min(1, sA) (35)

The extra operation on sA, maximising its value to 1, is needed as it will be applied in the
form of a linear decrease of a parameter (which should not become negative, see Table 4).
Practical examples for the pMoA are shown in Table 5.

pMoA S
Assimilation or feeding [1,0,0,0]
Maintenance costs (somatic and maturity) [0,1,0,0]
Assimilation and maintenance [1,1,0,0]
Growth costs [0,0,1,0]
Reproduction costs [0,0,0,1]
Growth and reproduction costs [0,0,1,1]

Table 5: Examples for how the switch vector S can be used to create pMoAs with one or
more affected processes.

2.4 Effects on survival

Effects on survival can be included in the same analysis as the effects on growth and re-
production. Since we now include scaled damage, we can directly use the hazard equations
from GUTS. The hazard rate is calculated as:

h = bws max(0, Dw − zws ) (36)

The hazard rate is subsequently turned into a survival probability by integration (here in
ODE form, which is suitable as the rest of the model is in ODE form as well):
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d

dt
S = −(h+ hb)S with S(0) = 1 (37)

Note that the hazard equation rests on the assumption that the same scaled damage
level is affecting the energy budget and survival (i.e., the same kmd applies). It may, however,
be that lethal and sub-lethal effects are triggered by a different type of damage, which may
have different dynamics. At this moment, there is not enough experimental evidence to
test this assumption.

So far, DEBtox applications have only used stochastic death (SD) for survival. A
good reason for that is that SD is consistent with the formulation for sub-lethal effects:
damage above a threshold leads to a linear change in a model parameter. The individual
tolerance (IT) model assumes differences in the threshold amongst the individuals in the
(test) population, and instant death above a threshold. For sub-lethal effects, such an
all-or-nothing response is unrealistic. At the EC50 for reproduction, we do not see half of
the individuals stopping reproduction while the rest continue to reproduce at control rate.
Even though it seems inconsistent, it is of course possible to use an IT model for survival
in a DEBtox model. However, it is good to note that the IT model cannot (generally) be
represented as an ODE, which complicates implementation.

2.5 Effects on growth and reproduction: model in primary pa-
rameters

For the full model (as defined in Section 1), we don’t need to do anything else. We can
define a pMoA as a switch vector S (Table 4), apply the stress factors s∗ to the respective
primary parameters (Table 4), and let the model run. As already explained, the downside
of using the full model is dealing with abstract primary parameters and the need for
a set of conversion factors and yield coefficients. The first issue can be tackled by an
internal reformulation of model parameters: users of the model can work with compound
parameters while, internally, the model runs with primary ones. This trick was used for the
classical DEBtox model in [14] to allow for a straightforward (and error-free) application of
stress factors on primary parameters. We have already seen in Section 1.3 that compound
parameters can be derived from primary ones (e.g., Eq. 15). Such relationships can also
be reversed: we can calculate the primary parameters from compound ones (and a set of
conversion factors and yield coefficients):
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L0 = δML
M
0 (38)

Lp = δML
M
p (39)

Lm = δML
M
m (40)

Jv
M = rB

3dV
yV A

(41)

Ja
Am = Rm

WB0

yBA

Lm

L3
m − L3

p

+ Jv
MLm (42)

κ = Lm
Jv
M

Ja
Am

(43)

Jv
J =

1− κ
κ

Jv
M (44)

Note that we now need to make a clear distinction between volumetric length measures L∗
and actual length measures LM∗ . Table 6 provides a summary of the parameters needed
for this model version.

Parameter group Symbols
Forcings f , Cw

User parameters: basic LMm , LM0 , LMp , rB, Rm, WB0

Conversion factors and yields δM, dV , yV A, yBA

Switches for damage and pMoA configuration X, S
User parameters: sub-lethal toxicity kmd , zwb , bwb
User parameters: lethal toxicity hb, z

w
s , bws

Additional: losses with repro only KRV

Table 6: Input parameters used in the DEBtox model in primary parameters (compound
parameters are translated into primary ones). In general, one would start from KRV = 1
and f = 1 (this parameter can only be fitted if there is more than one food treatment).
Parameters hb, z

w
s and bws are only used when survival data are available as well.

2.6 Effects on growth and reproduction: model in compound
parameters

Starting with the equation for growth, we can use the filled-in form as presented in Eq.
13. In this equation, we can add the stress factors as in Table 4:

d

dt
L =

yV A

3dV
Jv
M

1 + sM
1 + sG

(
fκ
Ja
Am

Jv
M

1− sA
1 + sM

− L
)

(45)

= rB
1 + sM
1 + sG

(
fLm

1− sA
1 + sM

− L
)

(46)
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For reproduction, including maturity maintenance, some more work is needed. Starting
from Equation 16 and adding stress factors:

R =
yBA

WB0

1

1 + sR

(
(1− κ)fJa

AmL
2(1− sA)− 1− κ

κ
Jv
ML

3
p(1 + sM)

)
(47)

=
yBA

WB0

1

1 + sR

1− κ
κ

Jv
M

(
fκ
Ja
Am

Jv
M

L2(1− sA)− L3
p(1 + sM)

)
(48)

=
yBA

WB0

1

1 + sR

1− κ
κ

Jv
M

(
fLmL

2(1− sA)− L3
p(1 + sM)

)
(49)

The maximum reproduction rate in the control is still the same as in Eq. 19. Therefore,
we can write the reproduction equation as (adding the ‘max’ operator to prevent negative
reproduction rates):

R = max

(
0,

Rm

1 + sR

fLmL
2(1− sA)− L3

p(1 + sM)

L3
m − L3

p

)
(50)

The final result is thus an extremely compact model:

d

dt
L = rB

1 + sM
1 + sG

(
fLm

1− sA
1 + sM

− L
)

with L(0) = L0 (51)

R = max

(
0,

Rm

1 + sR

fLmL
2(1− sA)− L3

p(1 + sM)

L3
m − L3

p

)
if L < Lp then R = 0 (52)

d

dt
Rc = R with Rc(0) = 0 (53)

The model, in this formulation, is quite similar to the original DEBtox equations of [15],
with a few differences. The original model used scaled body length (l = L/Lm), which is
avoided here (as we are interested in absolute length, and there is a potential for confusion
as Lm will be affected by toxic stress as well). Furthermore, this model follows from
DEBkiss, which does not have a reserve compartment. This implies that the parameter
g from the original DEBtox equations does not occur here, which simplifies the equations
somewhat. Furthermore, g was a nuisance as it could not be practically determined from
experimental toxicity data and had to be fixed to a ‘not-unreasonable value’.

As already explained in Section 1.3, the model is expressed in volumetric lengths but
any length measure can be used in these equations as long as it is used consistently. Any
conversion factor will simply drop out.
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3 Adding starvation response to the compound model

This module has not been published before; it has been derived specifically for this manuscript,
but will be included in a future update of the DEBkiss e-book [8]. Two additional symbols
are used in the derivation, which are presented in Table 7.

Symbol Explanation Dimension Sugg. value
fR virtual food level for reproduction (starvation) − −
f ∗ minimum food level to prevent shrinking − −

Table 7: Explanation of additional symbols for the starvation module.

Disadvantage of using the model in compound parameters, as derived in the previous
section, is that we do not have direct access to the mass fluxes anymore. In most cases, this
should not concern us. However, this does become problematic for starvation. In Section
1.2, I presented a consistent starvation strategy in Eq. 9 and 10. However, without access
to the mass fluxes J∗, this is impossible to translate into the model formulation using
compound parameters. However, by cheating a little, it can be done in DEBkiss (as it
lacks a reserve). The price to pay is that we need to set a value for κ, and to make
assumptions on the value of the product of the two yield factors: yV A × yAV .

Starvation occurs when the ODE for growth threatens to become negative. At that
point, I assumed that the organism is able to redirect resources from the 1 − κ flux to
meet the maintenance requirements to prevent shrinking (at the expense of a reduction in
reproduction rate). To prevent shrinking (so to keep dL/dt = 0), at a certain body size
and stress level, the organism needs a certain amount of resources f ∗:

0 = rB
1 + sM
1 + sG

(
f ∗Lm

1− sA
1 + sM

− L
)

(54)

f ∗Lm
1− sA
1 + sM

= L (55)

f ∗ =
L

Lm

1 + sM
1− sA

(56)

When starvation occurs, the real food level is insufficient to meet these demands, so f <
f ∗.3 Now κ needs to change to prevent shrinking. The assimilation flux of resources was
given by:

JA = fJa
AmL

2 (57)

The flux to the soma (somatic maintenance and growth) is:

JM + JG = κfJa
AmL

2 (58)

3From this equation, it follows that a fully-grown adult (L = Lm) will enter a starvation situation as
soon as f < 1 or at any stress on assimilation or maintenance. Exposing adults to a toxicant could thus
rapidly induce starvation.
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The κ flux (JM + JG), required f ∗, so κ needs to be multiplied by a factor of f ∗/f to
prevent shrinking. The flux into the 1− κ branch is thereby decreased to:

JJ + JR =

(
1− κf

∗

f

)
fJa

AmL
2 (59)

To minimise changes to the reproduction equation (which does not include κ explicitly), it
turns out to be practical to work with a virtual food level for the JJ + JR (or 1− κ) flux.
This virtual food level is given the symbol fR:

(1− κ)fR =

(
1− κf

∗

f

)
f (60)

fR =

(
1− κf∗

f

)
f

1− κ
(61)

fR =
f − κf ∗

1− κ
(62)

(63)

This fR can be used in the standard reproduction equation, capturing the effect of a change
in κ, such that κ can be left to its original value in the equations. Some values of fR will
lead to negative reproduction rates (when the flux JJ + JR is insufficient to pay maturity
maintenance), but this is captured by the ‘max’ operator in Eq. 52.

If starvation becomes more severe, there will come a point where fR starts to become
negative. This implies that the 1−κ flux does not have sufficient assimilates to fuel somatic
maintenance. If fR threatens to become negative, the organism will need to shrink: burn
structural biomass to pay somatic maintenance costs. We already encounterd the shrinking
equation (note that JV is here negative):

JV = (JA − JM)/yAV (64)

Starting from this equation for JV , we can go through the same steps as for the growth
equation in Section 2.6, and including stress factors.4

3dVL
2 d

dt
L =

1

yAV

(
fJa

Am(1− sA)L2 − Jv
M(1 + sM)L3

)
(65)

d

dt
L =

Jv
M(1 + sM)

3dV yAV

(
f
Ja
Am

Jv
M

1− sA
1 + sM

− L
)

(66)

We would like to use the compound parameters rB and Lm again, but the result is not as
nice as for the growth equation (κ cannot be avoided):

4Growth and shrinking are probably rather unrelated processes. Therefore, I think it is logical to
assume that any stress on growth costs will not affect the shrinking process. Therefore, there is no stress
factor sG on the yield of assimilates on burning structure.
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d

dt
L =

rB
yV AyAV

(1 + sM)

(
f
Lm

κ

1− sA
1 + sM

− L
)

(67)

3.1 Summary of starvation module

The starvation module is triggered when the standard calculation for dL/dt leads to neg-
ative growth. The first step is to calculate a virtual food level for reproduction:

fR =
f − κ L

Lm

1+sM
1−sA

1− κ
(68)

As long as fR ≥ 0, use this fR in the reproduction equation, and set dL/dt = 0. When
fR < 0, set R = 0 and shrink (using yP ≡ yV AyAV ):

d

dt
L =

rB
yP

(1 + sM)

(
f
Lm

κ

1− sA
1 + sM

− L
)

(69)

Clearly, shrinking cannot continue indefinitely. The degree of shrinking that an animal
can sustain is species specific. In practice, some limit will need to be set, or the degree of
shrinking linked to survival in some manner.

The simple starvation module presented here thus requires knowledge of κ, which is a
primary parameter. This is unfortunate. However, we can use the general default κ = 0.8
as a starting point. It might even be possible to fit κ using data on starvation responses.
For shrinking, we additionally need the product of the two yield coefficients: yV A × yAV .
By default, both factors are set at 0.8 in debkiss, so 0.64 is a good place to start.

The total set of model parameters for the compound model is now summarised in Table
8. For explaining growth and reproduction under ad libitum feeding (standard ecotoxicity
test conditions), we need to fit 8 model parameters. If we have toxicity data at different,
constant food levels, we need to fit one f for each extra food treatment. Fitting survival
requires 3 extra parameters. To include chemical losses with reproduction and deal with
starvation, we need to provide values for two parameters in each case. These parameters
can generally be fixed to defaults or derived from general biological information (especially
the relative egg weight FBV ).
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Parameter group Symbols
Forcings f , Cw

User parameters: basic Lm, L0, Lp, rB, Rm

Switches for damage and pMoA configuration X, S
User parameters: toxicity sub-lethal kmd , zwb , bwb
User parameters: toxicity lethal hb, z

w
s , bws

Additional: for losses with repro only FBV , KRV

Additional: for starvation only κ, yP

Table 8: Various parameters used in the proposed standard DEBtox model. In general,
one would start by fixing KRV = 1 (same chemical affinity in egg and structure), f = 1 (ad
libitum feeding), κ = 0.8, yP = 0.64, and FBV set to a reasonable value for the species of
interest (dividing egg dry weight by a representative (structural) dry weight for reproducing
mothers).
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4 Complete compound model

In pseudo code, the set of derivatives (as input function for an ODE-solver) looks like this:
% calculate stress factor and hazard rate

s = bwb max(0, Dw − zwb ) (70)

h = bws max(0, Dw − zws ) (71)

% translate s into a set of specific stresses sA, sM, sG and sR

[sA, sM , sG, sR] = s× S (72)

sA → min(1, sA) (73)

% calculate derivative for body length

d

dt
L = rB

1 + sM
1 + sG

(
fLm

1− sA
1 + sM

− L
)

with L(0) = L0 (74)

f_R = f % by default, the virtual food level for repro equals f

if dL/dt < 0 % starvation, so calculate virtual food level for repro

fR =
f − κ L

Lm

1+sM
1−sA

1− κ
(75)

if f_R >= 0 % the 1-kappa branch can pay maintenance

d

dt
L = 0 (76)

otherwise % calculate shrinking rate

d

dt
L =

rB
yP

(1 + sM)

(
f
Lm

κ

1− sA
1 + sM

− L
)

(77)

end

end

R = 0 % by default, reproduction is zero

if L >= Lp % calculate reproduction rate

R = max

(
0,

Rm

1 + sR

fRLmL
2(1− sA)− L3

p(1 + sM)

L3
m − L3

p

)
(78)

end

% calculate change in cumulative reproduction rate

d

dt
Rc = R with Rc(0) = 0 (79)
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% calculate survival probability

d

dt
S = −(h+ hb)S with S(0) = 1 (80)

% define the feedback factors from the settings in X

[xu, xe, xG, xR] = X ◦
[
Lm

L
,
Lm

L
,

3

L

d

dt
L,R FBVKRV

]
(81)

xu → max(1, xu) xe → max(1, xe) (82)

% calculate scaled damage:

d

dt
Dw = kmd (xuCw − xeDw)− (xG + xR)Dw (83)
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5 Which model to use

In this document, I presented two formulations of the DEBkiss model for analysing toxicity
data. One uses the model in primary parameters, although the user can be presented with
easy-to-interpret compound parameters (see Section 2.5). The other is built with compound
parameters (as summarised in Section 4). Clearly, the latter model is more compact and
requires fewer parameters. Several of these additional parameters are difficult to establish
for a species. Fortunately, their value is not usually relevant, as evidenced from the fact
that we can create a model in compound parameters that does not need these parameters.
What they are needed for is to identify κ, and, as shown in Section 3, κ popped up in
the compound model for the starvation response only. However, it is difficult to require
all users of (results of) a model to be familiar with the detailed role that each parameter
plays. For this reason, I would say that the model in compound parameters is the best
place to start, and only move to the primary-parameter model if the compound model
performs unsatisfactorily. The model with primary parameters is easier to extend when
some of the model assumptions need to be modified, and some potential extensions are
discussed below.

Adding a reproduction buffer. For the application of DEBkiss to ecotoxicity data, I
made the simplifying assumption that reproduction is a continuous process. However, in
many species (incl. daphnids and springtails), offspring are produced in clutches, which
implies that the continuous allocation to reproduction needs to be collected into a repro-
duction buffer. The complete DEBkiss model includes such a buffer [8], which also requires
a (species-specific) set of rules for its behaviour. It is good to note that a reproduction
buffer, and its handling rules, might also affect toxicokinetics (as it affects size and com-
position of the individual). Furthermore, such a reproduction buffer might also be used
to fuel somatic maintenance costs under starvation, postponing negative effects for adults.
The e-book [8] contains equations for these processes, but the resulting model will be more
complex to parameterise and to apply in practice (discontinuous reproduction also requires
due care in fitting the model to observations).

Adding maturity. In Figure 1, maturation was shown in grey; the process is there, but
only as a sink for the 1 − κ flux in juveniles. However, we can easily add maturity as a
state variable in the DEBkiss model. This can be explored when body length at puberty
does not remain constant under different treatments. Instead of setting puberty at a fixed
body size, it can be set at a fixed cumulative investment into maturation (as is done in the
standard DEB animal model). In addition, the simplifying rule to link specific maturity
maintenance to somatic maintenance (see Eq. 6) can be changed, and specific maturity
maintenance treated as a parameter to be fitted (Jh

J , multiplied by the maturity level rather
than body size). The e-book [8] provides more details.

Adding pMoAs. Chemicals may affect any of the primary parameters of the DEBkiss
model. For the model in compound parameters, a restriction to four metabolic processes
was made. An obvious candidate for an additional pMoA would be κ. Effects on κ have
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been suggested for the effects of parasites (e.g., [5]) and kairomones (see [7], Page 56).
Effects patterns associated with changes in κ seem to be accompanied by changes in Lp.
Therefore, such a pMoA is best investigated in the primary-parameter model with added
state variable for maturity (see previous point). This also holds if one would like to try
out effects on either somatic or maturity maintenance by itself. Such pMoAs break down
the relationship between body size and investment in maturation, and DEB theory would
predict a shift in Lp.

Adding respiration or feeding data. We may have additional endpoints in a toxicity
test besides body size and reproductive output. For example, respiration and feeding rates
may have been measured. Such additional endpoints can be very helpful to select the most
appropriate pMoA (e.g., to distinguish between effects on assimilation or maintenance).
Since the model in primary parameters has direct access to all mass flows, it is easy to
produce estimates for such additional endpoints. The e-book [8] provides more details.

Adding yolk-feeding stages. For the compound-parameter model, the embryo stage
was left out; this stage would be hard (and perhaps even impossible) to include consistently.
However, the primary-parameter DEBkiss model explicitly includes this stage. A detailed
case study for Atlantic cod was presented recently [13], excluding toxicant stress. Including
toxicants requires further thought, as TK will be more complex (e.g., the surface area for
uptake in an egg is not related to the structural biomass of the embryo, and chemicals will
also partition into the yolk compartment).
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6 List of assumptions

Model assumptions, relevant for the updated DEBtox model presented here, are sum-
marised in Table 9. Additional assumptions for the toxicant-effects module in Table 10.

1. There are two types of biomass: assimilates and structural body components (food is not
explicitly considered). Each type has a constant composition. They can be converted into each
other with a certain constant efficiency. The state variables of the organism are the mass of
the structural body, and the cumulated reproductive output.

2. We consider only post-embryonic stages here, which means that the animal has two life stages:
a juvenile that feeds but does not reproduce, and an adult that reproduces. The transition
from juvenile to adult (puberty) is triggered by a critical structural body size.

3. Feeding is included by setting/fitting a scaled functional response (0 means complete starvation
and 1 ad libitum feeding).

4. The assimilation rate is proportional to the surface area of the animal. Food is instantly
translated into assimilates that are directly used to fuel metabolic processes.

5. The flow of assimilates is split into a constant fraction κ for somatic maintenance and struc-
tural growth (the soma), and 1 − κ for maturation, maturity maintenance, and reproduction.
From the κ flow, somatic maintenance costs are paid first. Only structural biomass requires
maintenance, which is proportional to its volume. The remainder of this flow is used for growth
(with certain efficiency).

6. From the 1 − κ flow, maturity maintenance costs are paid first. Maturity maintenance is
proportional to structural volume up till puberty; after puberty, it is fixed to the level at
puberty. After paying maturity maintenance, the remainder is used for egg production in adults.
For juveniles, the remainder is burnt to increase complexity of the organism (maturation) and
is not followed. Transformation of allocated assimilates to eggs comes with a certain (high)
efficiency. Here, reproduction is treated as a continuous process (also leading to fractional eggs
being produced in a time interval). For the compound model, egg weight is constant.

7. If feeding is insufficient to pay somatic maintenance costs, the organism first diverts energy
from the 1 − κ flux of assimilates, thereby reducing the flux to reproduction/maturation and
maturity maintenance (this latter process remains dominant over the downstream sinks, but
can be reduced to zero if the 1 − κ flux is insufficient to meet its demands). If reduction of
the 1−κ flux is insufficient, structure is converted into assimilates to pay somatic maintenance
(shrinking). The investment into maturity and maturity maintenance can be reduced without
relevant consequences for the life-history.

Table 9: The list of assumptions for the basic debkiss model as used here.
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1. Exposure to toxicants produces damage. In the ‘reduced model’ scaled damage in the organism
is treated as one homogeneous (well-mixed) compartment. The accrual flux of damage is
proportional to the external concentration, and the repair flux is proportional to the damage
level. Damage dynamics may or may not be affected by changes in the surface:volume ratio,
dilution by growth, or losses with reproduction.

2. When the damage level exceeds a threshold, the value of one or more of the primary parameters
changes proportional to the amount by which damage exceeds the threshold. For survival, the
affected parameter is the hazard rate, and survival will have its own threshold and proportion-
ality (the effects strength). Survival is assumed to be driven by the same type of damage as
sub-lethal effects. Note that this assumption of proportionality implies recovery: when damage
decreases, so will the effect on the model parameter.

3. Background mortality can be represented by a constant hazard rate (leading to a exponential
decrease in survival probability over time).

Table 10: The list of assumptions for the toxicant extension of debkiss.
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7 Fixed values for springtails

For the fit in the main text on the data for Folsomia candida, two species-specific param-
eters were kept fixed: the initial volumetric length L0 and the relative weight of an egg
FBV . The latter is only needed for the feedback configurations that include losses with
reproduction.

The initial fresh weight of the 1-day old animals used in the toxicity test was reported
by the original authors to be 18 µg [3]. This seems to be very large. For the original
DEBtox analyses with this data set [10, 11], I assumed that a mistake in the units was
made, so that it should have been 18 ng. This translates into a volumetric length of 26
µm (which looks reasonable enough in the graphs). However, this is rather small given a
reported egg diameter of 80-110 µm [4].

More recently, Hamda performed detailed studies on F. candida in a DEB context
[6]. He reported an egg dry weight WB0 of 0.41 µg and a dry-weight density dV of 0.28
mg/mm3 for adults. Assuming the same dV holds for eggs, it is possible to translate the
egg diameter of 80-110 µm from [4] to a dry weight of 0.08-0.2 µg. Given the uncertainties
in these translations (and potential differences between strains), these numbers are quite
comparable. Looking at egg fresh weight, we get estimates of 0.3-0.7 µg [4] and 1.5 µg [6].
This makes it highly likely that the initial fresh weight reported by [3] was a factor of 10
off, and it should have been 1.8 µg for 1-day old juveniles. This can be translated into
L0 = 0.122 mm, assuming a wet-weight density of 1 mg/mm3. This is the value used for
the fit in the main text.

Interestingly, quite large differences in initial body weight do not have a strong influence
on the visual model fit. This partly relates to the fact that I fit the data as volumetric
length: taking the cubic root of estimated volume implies that a difference of a factor of
1000 on weights translates into a factor of 10 on length. Another aspect is that the initial
growth rate on length basis is largely independent of the initial size. This can be seen from
Eq. 14: at small values of L, the growth rate dL/dt is independent of L. A somewhat
small L0 can thus be compensated by a somewhat larger value for rB, producing a rather
similar fit on the body-size data. Since growth leads to dilution of damage (depending
on the configuration for the damage equation applied), there may be more important
consequences for the response to toxicants.

The unrealistically small initial body length in the original DEBtox analyses for this
data set [10, 11] actually yields a somewhat better fit on the initial part of the growth
curve. This may relate to the fact that F. candida may not grow according to the von
Bertalanffy growth curve early in life. Hamda [6] found that early growth was retarded for
some time (12.6 days at 20◦C), possibly due to different behaviour (the urge to disperse
rather than spend the maximum amount of time on feeding). Initial slow growth could be
rather common for many species, and there may well be substantial consequences for the
analysis and prediction of toxicity [19]. Unfortunately, the data set used for the case study
in this paper does not have the information to support or reject the possibility for initial
slow growth.

The egg fresh weight was estimated as 1.5 µg, based on the results of [6]. The repro-
ductive period used for the model fit is between the observations at day 23 and day 44, in
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which time the mothers weigh some 180 µg (fresh weight) on average across all treatment.
This leads to a relative egg weight FBV of 0.008 mg/mg.

28



References

[1] R. Ashauer and T. Jager. Physiological modes of action across species and toxicants: the key to
predictive ecotoxicology. Environmental Science-Processes & Impacts, 20(1):48–57, 2018.

[2] E. Billoir, M. L. Delignette-Muller, A. R. R. Péry, O. Geffard, and S. Charles. Statistical cautions
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