DEBtox information
Making sense of ecotoxicity test results



Main menu


Submenu

DEBtox information

DEBtox information

Publications / Papers on survival

Explanation


The papers here are organised by year of publication. Each paper gets a few keys to facilitate searching by topic. Each paper has a Digital Object Identifier (DOI), that uniquely identifies it on the internet. Clicking the link provides the abstract, and also the PDF if you have access rights to that journal. Papers dealing with sub-lethal endpoints only, are located here.

Requirements to be included


Only hazard models are included in the list below. That means that death is treated as a chance process at the level of the individual. Papers dealing solely with 'individual tolerance' (e.g., the dynamic CBR models) are not (yet) included.


Essential reading


  • Jager T, Albert C, Preuss TG, Ashauer R (2011). General Unified Threshold model of Survival - a toxicokinetic-toxicodynamic framework for ecotoxicology. Environ Sci Technol 45:2529-2540. http://dx.doi.org/10.1021/es103092a



Key

Description

key_gen
general paper
key_sur
survival data only
key_mix
dealing with mixtures of toxicants
key_mol
related to molecular level
key_tim
time-varying exposure
key_pop
population context

Full list by year


1981

1994

  • Bedaux JJM and Kooijman SALM (1994). Statistical analysis of bioassays based on hazard modelling. Environ Ecol Stat 1:303-314. http://dx.doi.org/10.1007/BF00469427 key_sur, key_gen
1996

1997

1998

  • Gerritsen A, van der Hoeven N and Pielaat A (1998). The acute toxicity of selected alkylphenols to young and adult Daphnia magna. Ecotox Environ Saf 39(3):227-232 http://dx.doi.org/10.1006/eesa.1997.1578 key_sur
2000

  • Andersen JS, Bedaux JJM, Kooijman SALM and Holst H (2000). The influence of design parameters on statistical inference in non-linear estimation; a simulation study based on survival data and hazard modelling. J Agric Biol Environ Stat 5:323-341 http://www.jstor.org/stable/1400457 key_sur
2001

  • Péry ARR, Bedaux JJM, Zonneveld C and Kooijman SALM (2001). Analysis of bioassays with time-varying concentrations. Water Res 35:3825-3832 http://dx.doi.org/10.1016/S0043-1354(01)00106-3 key_sur, key_tim
  • Widianarko B, Kuntoro FXS, Van Gestel CAM and Van Straalen NM (2001). Toxicokinetics and toxicity of zinc under time-varying exposure in the guppy (Poecilia reticulata). Environ Toxicol Chem 20(4):763-768 http://dx.doi.org/10.1002/etc.5620200410 key_sur, key_tim
2002

  • Bonnomet V, Duboudin C, Magaud H, Thybaud E, Vindimian E and Beauzamy B (2002). Modeling explicitly and mechanistically median lethal concentration as a function of time for risk assessment. Environ Toxicol Chem 21(10):2252-2259 http://dx.doi.org/10.1002/etc.5620211032 key_sur
  • Péry ARR, Flammarion P, Vollat B, Bedaux JJM, Kooijman SALM and Garric J (2002). Using a biology-based model (DEBtox) to analyse bioassays in ecotoxicology: Opportunities & recommendations. Environ Toxicol Chem 21:459-465 http://dx.doi.org/10.1002/etc.5620210232 key_sur, key_gen
2003

  • Heugens EHW, Jager T, Creyghton R, Kraak MHS, Hendriks AJ, Van Straalen NM and Admiraal W (2003). Temperature-dependent effects of cadmium on Daphnia magna: accumulation versus sensitivity. Environ Sci Technol 37(10):2145-2151 http://dx.doi.org/10.1021/es0264347 key_surv
  • Péry ARR, Ducrot V, Mons R, Miege C, Gahou J, Gorini D and Garric J (2003). Survival tests with Chironomus riparius exposed to spiked sediments can profit from DEBtox model. Wat Res 37(11):2691-2699 http://dx.doi.org/10.1016/S0043-1354(03)00074-5 key_surv
2005

  • Jager T and Kooijman SALM (2005). Modeling receptor kinetics in the analysis of survival data for organophosphorus pesticides. Environ Sci Technol 39:8307-8314 http://dx.doi.org/10.1021/es050817y key_sur
  • Lopes C, Péry ARR, Chaumot A and Charles S (2005). Ecotoxicology and population dynamics: using DEBtox models in a Leslie modeling approach. Ecol Mod 188(1):30-40 http://dx.doi.org/10.1016/j.ecolmodel.2005.05.004 key_sur, key_pop
2007

  • Ashauer R, Boxall ABA and Brown CD (2007). New ecotoxicological model to simulate survival of aquatic invertebrates after exposure to fluctuating and sequential pulses of pesticides. Environ Sci Technol 41(4):1480-1486 http://dx.doi.org/10.1021/es061727b key_sur, key_tim
  • Ashauer R, Boxall ABA and Brown CD (2007). Modeling combined effects of pulsed exposure to carbaryl and chlorpyrifos on Gammarus pulex. Environ Sci Technol 41(15):5535-5541 http://dx.doi.org/10.1021/es070283w key_sur, key_mix, key_tim
  • Ashauer R, Boxall ABA and Brown CD (2007). Simulating toxicity of carbaryl to Gammarus pulex after sequential pulsed exposure. Environ Sci Technol 41(15):5528-5534 http://dx.doi.org/10.1021/es062977v key_sur, key_tim
  • Baas J, Van Houte BPP, Van Gestel CAM and Kooijman SALM (2007). Modelling the effects of binary mixtures on survival in time. Environ Toxicol Chem 26:1320-1327 http://dx.doi.org/10.1897/06-437R.1 key_sur, key_mix
  • Kooijman SALM, Baas J, Bontje D, Broerse M, Jager T, Van Gestel CAM and Van Hattum B (2007). Scaling relationships based on partition coefficients and body sizes have similarities and interactions. SAR QSAR Environ Res 18:315-330 http://dx.doi.org/10.1080/10629360701304196 key_sur
2008

  • Ashauer R and Brown CD (2008). Toxicodynamic assumptions in ecotoxicological hazard models. Environ Toxicol Chem 27(8):1817-1821 http://dx.doi.org/10.1897/07-642.1 key_sur
  • Penttinen OP, Kilpi-Koski J, Jokela M, Toivainen K and Vaisanen A (2008). Importance of dose metrics for lethal and sublethal sediment metal toxicity in the oligochaete worm Lumbriculus variegates. J Soil Sed 8(1):59-66 http://dx.doi.org/10.1065/jss2007.12.267 key_sur
  • Smit, MGD, Ebbens E, Jak RG, Huijbregts MAJ (2008). Time and concentration dependency in the potentially affected fraction of species: the case of hydrogen peroxide treatment of ballast water. Environ Toxicol Chem 27(3):746-753 http://dx.doi.org/10.1897/07-343.1 key_sur
2009

  • Baas J, Jager T and Kooijman SALM (2009). Estimation of no effect concentrations from exposure experiments when values scatter among individuals. Ecol Mod 220:411-418 http://dx.doi.org/10.1016/j.ecolmodel.2008.10.008 key_sur
  • Baas J, Jager T and Kooijman SALM (2009). A model to analyze effects of complex mixtures on survival. Ecotox Environ Saf 72:669-676 http://dx.doi.org/10.1016/j.ecoenv.2008.09.003 key_sur, key_mix
  • Baas J, Willems J, Jager T, Kraak MHS, Vandenbrouck T and Kooijman SALM (2009). Prediction of daphnid survival after in situ exposure to complex mixtures. Environ Sci Technol 43:6064-6069 http://dx.doi.org/10.1021/es901083v key_sur, key_mix
  • Huang S, Jia Y and Wang SSY (2009). Two-dimensional numerical and eco-toxicological modeling of chemical spills. Front Environ Sci Engin China 3(2):178–185 http://dx.doi.org/10.1007/s11783-009-0020-9 key_sur
  • Jager T and Kooijman SALM (2009). A biology-based approach for quantitative structure-activity relationships (QSARs) in ecotoxicity. Ecotoxicology 18:187-196 http://dx.doi.org/10.1007/s10646-008-0271-4 key_sur
2010

  • Ashauer R (2010). Toxicokinetic-toxicodynamic modelling in an individual based context-Consequences of parameter variability. Ecol Mod 221(9):1325-1328 http://dx.doi.org/10.1016/j.ecolmodel.2010.01.015 key_sur
  • Ashauer R, Hintermeister A, Caravatti I, Kretschmann A and Escher BI (2010). Toxicokinetic and toxicodynamic modeling explains carry-over toxicity from exposure to diazinon by slow organism recovery. Environ Sci Technol 44(10):3963-3971 http://dx.doi.org/10.1021/es903478b key_sur, key_tim
  • Baas J and Kooijman B (2010). Chemical contamination and the ecological quality of surface water. Envir Pollut 158:1603-1607 http://dx.doi.org/10.1016/j.envpol.2009.12.015 key_sur, key_mix
  • Baas J, Stefanowicz AM, Klimek B, Laskowski R and Kooijman SALM (2010). Model-based experimental design for assessing effects of mixtures of chemicals. Environ Pollut 158:115-120 http://dx.doi.org/10.1016/j.envpol.2009.07.030 key_sur, key_mix
  • Ducrot V, Péry ARR and Lagadic L (2010). Modelling effects of diquat under realistic exposure patterns in genetically differentiated populations of the gastropod Lymnaea stagnalis. Phil Trans R Soc B 365:3485-3494 http://dx.doi.org/10.1098/rstb.2010.004 key sur
  • Péry ARR, Troise A, Tissot S and Vincent JM (2010). Comparison of models to analyze mortality data and derive concentration-time response relationship of inhaled chemicals. Regul Toxicol Pharmacol 57(1):124-128 http://dx.doi.org/10.1016/j.yrtph.2010.02.005 key_sur
2011

  • Jager T, Albert C, Preuss TG and Ashauer R (2011). General Unified Threshold model of Survival - a toxicokinetic-toxicodynamic framework for ecotoxicology. Environ Sci Technol 45:2529-2540 http://dx.doi.org/10.1021/es103092a key_sur, key_gen
  • Kretschmann A, Ashauer R, Hitzfeld K, Spaak P, Hollender J and Escher BI (2011). Mechanistic toxicodynamic model for receptor-mediated toxicity of diazoxon, the active metabolite of diazinon, in Daphnia magna. Environ Sci Technol 45(11):4980-4987 http://dx.doi.org/10.1021/es1042386 key_sur
  • Olsen, GH, Smit, MGD, Carroll, J, Jæger I, Smith T and Camus L (2011). Arctic versus temperate comparison of risk assessment metrics for 2-methyl-naphthalene. Mar Envir Res 72(4):179-187 http://dx.doi.org/10.1016/j.marenvres.2011.08.003 key_sur
  • Wolińska L, Brzuzan P, Woźny M, Góra M, Łuczyński MK, Podlasz P, Kolwicz S and Piasecka A (2011). Preliminary study on adverse effects of phenanthrene and its methyl and phenyl derivatives in larval zebrafish, Danio rerio. Environ Biotechnol 7(1):26-33 http://zfin.org/ZDB-PUB-130131-2 key_sur
2012

  • Albert C, Ashauer R, Künsch HR and Reichert P (2012). Bayesian experimental design for a toxicokinetic-toxicodynamic model. J Stat Plan Inf 142(1):263-275 http://dx.doi.org/10.1016/j.jspi.2011.07.014 key_gen, key_tim
  • Beaudouin R, Zeman FA, Péry ARR (2012). Individual sensitivity distribution evaluation from survival data using a mechanistic model: implications for ecotoxicological risk assessment. Chemosphere 89(1):83–88 http://dx.doi.org/10.1016/j.chemosphere.2012.04.021 key_sur
  • Kretschmann A, Ashauer R, Hollender J and Escher BI (2012). Toxicokinetic and toxicodynamic model for diazinon toxicity - mechanistic explanation of differences in the sensitivity of Daphnia magna and Gammarus pulex. Environ Toxicol Chem 31(9):2014–2022 http://dx.doi.org/10.1002/etc.1905 key_sur, key_tim
  • Nyman AM, Schirmer K and Ashauer R (2012). Toxicokinetic-toxicodynamic modelling of survival of Gammarus pulex in multiple pulse exposures to propiconazole: model assumptions, calibration data requirements and predictive power. Ecotoxicology 21(7):1828-1840 http://dx.doi.org/10.1007/s10646-012-0917-0 key_sur, key_tim
  • Tan QG and Wang WX (2012). Two-compartment toxicokinetic–toxicodynamic model to predict metal toxicity in Daphnia magna. Environ Sci Technol 46:9709-9715 http://dx.doi.org/10.1021/es301987u key_sur
  • Van Ommen Kloeke AEE, Jager T, Van Gestel CAM, Ellers J, Van Pomeren M, Krommenhoek T, Styrishave B, Hansen M and Roelofs D (2012). Time-related survival effects of two gluconasturtiin hydrolysis products on the terrestrial isopod Porcellio scaber. Chemosphere 89(9):1084–1090 http://dx.doi.org/10.1016/j.chemosphere.2012.05.074 key_sur, key_tim
  • Xu X, Dixon PM, Zhao Y and Newman MC (2012). Diagnostics to assess toxicokinetic–toxicodynamic models with interval-censored data. Environmetrics 24:332-341 http://dx.doi.org/10.1002/env.2216 key_sur, key_tim
2013

  • Ashauer R, Thorbek P, Warinton JS, Wheeler JR and Maund S (2013). A method to predict and understand fish survival under dynamic chemical stress using standard ecotoxicity data. Environ Toxicol Chem 32(4):954-965 http://dx.doi.org/10.1002/etc.2144 key_sur, key_tim
  • Gergs A, Zenker A, Grimm V and Preuss TG (2013). Chemical and natural stressors combined: from cryptic effects to population extinction. Scientific Reports 3:2036 http://dx.doi.org/10.1038/srep02036 key_sur, key_pop
  • Hansen BH, Altin D, Øverjordet IB, Jager T and Nordtug T (2013). Acute exposure of water soluble fractions of marine diesel on Arctic Calanus glacialis and boreal Calanus finmarchicus: Effects on survival and biomarker response. Sci Tot Environ 449:276–284 http://dx.doi.org/10.1016/j.scitotenv.2013.01.020 key_sur
  • Jager T and Hansen BH (2013). Linking survival and biomarker responses over time. Environ Toxicol Chem 32(8):1842-1845 http://dx.doi.org/10.1002/etc.2258 key_sur, key_mol
  • Kulkarni D, Daniels B and Preuss TG (2013). Life-stage-dependent sensitivity of the cyclopoid copepod Mesocyclops leuckarti to triphenyltin. Chemosphere 92:1145-1153 http://dx.doi.org/10.1016/j.chemosphere.2013.01.076 key_sur
  • Nyman AM, Hintermeister A, Schirmer K and Ashauer R (2013). The insecticide imidacloprid causes mortality of the freshwater amphipod Gammarus pulex by interfering with feeding behavior. PLOS ONE 8(5): e62472 http://dx.doi.org/10.1371/journal.pone.0062472 key_sur, key_tim
2014

  • Ardestani MM, Oduber F and Van Gestel CAM (2014). A combined toxicokinetics and toxicodynamics approach to assess the effect of pore water composition on cadmium bioavailability to Folsomia candida. Environ Toxicol Chem 33(7):1570–1577 http://dx.doi.org/10.1002/etc.2585  key_sur
  • Baveco JM, Norman S, Roessink I, Galic N and Van den Brink PJ (2014). Comparing population recovery after insecticide exposure for four aquatic invertebrate species using models of different complexity. Environ Toxicol Chem 33(7):1517-1528 http://dx.doi.org/10.1002/etc.2605 key_sur
  • Gabsi F, Hammers-Wirtz M, Grimm V, Schäffer A and Preuss TG (2014). Coupling different mechanistic effect models for capturing individual-and population-level effects of chemicals: Lessons from a case where standard risk assessment failed. Ecol Mod 280:18–29 http://dx.doi.org/10.1016/j.ecolmodel.2013.06.018 key_sur, key_pop
  • Galiç N, Ashauer R, Baveco H, Nyman AM, Barsi A, Thorbek P, Bruns E and Van den Brink PJ (2014). Modeling the contribution of toxicokinetic and toxicodynamic processes to the recovery of Gammarus pulex populations after exposure to pesticides. Environ Toxicol Chem 33(7):1476–1488 http://dx.doi.org/10.1002/etc.2481 key_sur
  • Hansen BH, Altin D, Bonaunet K and Øverjordet IB (2014) Acute toxicity of eight oil spill response chemicals to temperate, boreal, and arctic species. J Toxicol Environ Health A 77(9-11):495-505 http://dx.doi.org/10.1080/15287394.2014.886544 key_sur
  • Jager T (2014). Reconsidering sufficient and optimal test design in acute toxicity testing. Ecotoxicology 23(1):38-44 http://dx.doi.org/10.1007/s10646-013-1149-7 key_sur, key_gen
  • Klok C, Nordtug T and Tamis JE (2014). Estimating the impact of petroleum substances on survival in early life stages of cod (Gadus morhua) using the Dynamic Energy Budget theory. Mar Environ Res 101:60-68 http://dx.doi.org/10.1016/j.marenvres.2014.09.002 key_sur, key_tim
2015

  • Ashauer R, O’Connor I, Hintermeister A and Escher BI (2015), Death dilemma and organism recovery in ecotoxicology. Environ Sci Technol 49(16):10136–10146 http://dx.doi.org/10.1021/acs.est.5b03079 key_sur, key_gen
  • Baas J and Kooijman SALM (2015). Sensitivity of animals to chemical compounds links to metabolic rate. Ecotoxicology 24(3):657-663 http://dx.doi.org/10.1007/s10646-014-1413-5 key_gen, key_sur
  • Baas J, Spurgeon D and Broerse M (2015). A simple mechanistic model to interpret the effects of narcotics. SAR and QSAR in Environmental Research 26(3):165–180 http://dx.doi.org/10.1080/1062936X.2015.1018940 key_gen, key_sur
  • Candy SG, Sfiligoj BJ, King CK and Mondon JA (2015). Modelling grouped survival times in toxicological studies using Generalized Additive Models. Environ Ecol Stat 22:465–491 http://dx.doi.org//10.1007/s10651-014-0306-3 key_sur
  • Gao Y, Feng J, and Zhu L (2015). Prediction of acute toxicity of cadmium and lead to zebrafish larvae by using a refined toxicokinetic-toxicodynamic model. Aquat Toxicol 169:37-45 http://dx.doi.org/10.1016/j.aquatox.2015.09.005 key_sur
  • Gergs A, Kulkarni D and Preuss TG (2015). Body size-dependent toxicokinetics and toxicodynamics could explain intra- and interspecies variability in sensitivity. Environ Pollut 206:449–455 http://dx.doi.org/10.1016/j.envpol.2015.07.045 key_sur, key_gen
  • He E, Baas J and Van Gestel CAM (2015). Interaction between nickel and cobalt toxicity in Enchytraeus crypticus is due to competitive uptake. Environ Toxicol Chem 34 (2):328–337 http://dx.doi.org/10.1002/etc.2802 key_sur, key_mix
  • Kon Kam King G, Delignette-Muller ML, Kefford BJ, Piscart C and Charles S (2015). Constructing time-resolved species sensitivity distributions using a hierarchical toxico-dynamic model. Environ Sci Technol 49:12465−12473 http://dx.doi.org/10.1021/acs.est.5b02142 key_sure
  • Stadnicka-Michalak J, Schirmer K and Ashauer R (2015). Toxicology across scales: Cell population growth in vitro predicts reduced fish growth. Sci Adv 1, e1500302 http://dx.doi.org/10.1126/sciadv.1500302 key_sur

2016


  • Albert C, Vogel S and Ashauer R (2016). Computationally efficient implementation of a novel algorithm for the General Unified Threshold model of Survival (GUTS). PLoS Comput Biol 12(6):e1004978. http://dx.doi.org/10.1371/journal.pcbi.1004978 key_sur
  • Ashauer R, Albert C, Augustine C, Cedergreen N, Charles S, Ducrot V, Focks A, Gabsi F, Gergs A, Goussen B, Jager T, Kramer NI, Nyman AM, Poulsen V, Reichenberger S, Schäfer RB, Van den Brink PJ, Veltman K, Vogel S, Zimmer EI and Preuss TG (2016). Modelling survival: exposure pattern, species sensitivity and uncertainty. Sci Rep 6:29178 http://dx.doi.org/10.1038/srep29178 key_gen, key_sur.
  • Baas J, Vijver M, Rambohul J, Dunbar M, Van ‘t Zelfde M, Svendsen C and Spurgeon D (2016). Comparison and evaluation of pesticide monitoring programs using a process-based mixture model. Environ Toxicol Chem http://dx.doi.org/10.1002/etc.3492 key_mix, key_sur
  • Dohmen P, Preuss TG, Hamer M, Galic N, Strauss T, Van den Brink PJ, De Laender F and Bopp S (2016). Population-level effects and recovery of aquatic invertebrates after multiple applications of an insecticide. IEAM 12(1):67-81 http://dx.doi.org/10.1002/ieam.1676 key_sur, key_pop
  • Ducrot V, Ashauer R, Bednarska AJ, Hinarejos S, Thorbek P and Weyman G (2016). Using toxicokinetic-toxicodynamic modeling as an acute risk assessment refinement approach in vertebrate ecological risk assessment. IEAM 12(1):32-45 http://dx.doi.org/10.1002/ieam.1641 key_gen, key_sur
  • Gao Y, Feng J, Han F, and Zhu L (2016). Application of biotic ligand and toxicokinetic-toxicodynamic modeling to predict the accumulation and toxicity of metal mixtures to zebrafish larvae. Environ Pollut 213:16-29 http://dx.doi.org/10.1016/j.envpol.2016.01.073 key_sur
  • Gergs A, Gabsi F, Zenker A and Preus RG (2016). Demographic toxicokinetic−toxicodynamic modeling of lethal effects. Environ Sci Technol 50(11):6017-6024 http://dx.doi.org/10.1021/acs.est.6b01113 key_sur
  • Hesketh H, Lahive E, Horton AA , Robinson AG, Svendsen C, Rortais A, Dorne JL, Baas J, Spurgeon DJ and Heard MS (2016). Extending standard testing period in honeybees to predict lifespan impacts of pesticides and heavy metals using dynamic energy budget modelling. Scientific Reports 6: 37655. http://dx.doi.org/10.1038/srep37655 key_sur
  • Jager T, Altin D, Miljeteig C and Hansen BH (2016). Stage-dependent and sex-dependent sensitivity to water soluble fractions of fresh and weathered oil in the marine copepod Calanus finmarchicus. Environ Toxicol Chem 35(3):728-735 http://dx.doi.org/10.1002/etc.3237 key_sur, key_mix

2017


  • Ashauer A, O'Connor I, and Escher BI (2017). Toxic mixtures in time – the sequence makes the poison. Environ Sci Technol 51:3084-3092 http://dx.doi.org/10.1021/acs.est.6b06163 key_sur, key_mix
  • Chen WQ, Wang WX and Tan QG (2017). Revealing the complex effects of salinity on copper toxicity in an estuarine clam Potamocorbula laevis with a toxicokinetic-toxicodynamic model. Environ Pollut 222:323-330 https://doi.org/10.1016/j.envpol.2016.12.033 key_sur 
  • Delignette-Muller ML, Ruiz P and Veber P (2017). Robust fit of toxicokinetic−toxicodynamic models using prior knowledge contained in the design of survival toxicity tests. Environ Sci Technol 51(7):4038-4045 http://dx.doi.org/10.1021/acs.est.6b05326 key_sur See also comment by T. Jager and response of the authors.
  • Gao Y, Feng J, Wang C, and Zhu L (2017). Modeling interactions and toxicity of Cu-Zn mixtures to zebrafish larvae. Ecotox Environ Saf 138:146–153 http://dx.doi.org/10.1016/j.ecoenv.2016.12.028 key_sur key_mix
  • Gao Y, Feng J, and Zhu L (2017). Toxicodynamic modeling of zebrafish larvae to metals using stochastic death and individual tolerance models: comparisons of model assumptions, parameter sensitivity and predictive performance. Ecotoxicology 26:295-307 http://dx.doi.org/10.1007/s10646-017-1763-x key_sur key_mix
  • Heard MS, Baas J, Dorne JL , Lahive E, Robinson AG, Rortais A, Spurgeon DJ, Svendsen C and Hesketh H (2017). Comparative toxicity of pesticides and environmental contaminants in bees: are honey bees a useful proxy for wild bee species? Sci Tot Environ 578:357-365. http://dx.doi.org/10.1016/j.scitotenv.2016.10.180 key_sur
  • Henry Y, Piscart C, Charles S and Colinet H (2017). Combined effect of temperature and ammonia on molecular response and survival of the freshwater crustacean Gammarus pulex. Ecotox Environ Saf 137:42–48. http://dx.doi.org/10.1016/j.ecoenv.2016.11.011 key_sur
  • Jager T, Øverjordet IB, Nepstad R and Hansen BH (acc.). Dynamic links between lipid storage, toxicokinetics and mortality in a marine copepod exposed to dimethylnaphthalene. Accepted for publication in Environ Sci Technol. http://dx.doi.org/10.1021/acs.est.7b02212 key_sur
  • Robinson A, Hesketh H, Lahive E, Horton AA, Svendsen C, Rortais A, Dorne JL, Baas J, Heard MS and Spurgeon DJ (2017). Comparing bee species responses to chemical mixtures: common response patterns? PLoSONE 12(6):e0176289 https://doi.org/10.1371/journal.pone.0176289 key_sur, key_mix






The DEBtox information site, www.debtox.info, since July 2011