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Preface

About this book

The basis of this book is a re-worked version of the `refresher' as used for the tktd
modelling courses (http://www.debtox.info/dynmodtox.html), amended with parts
of my book chapter from Marine Ecotoxicology [16]. In both these works, I borrowed
ideas from the teaching materials we used at the department of Theoretical Biology
at the vu University, and from the textbook by Doucet and Sloep [8]. Chapter 5 also
contains elements from the supporting information of the algorithm paper [20], plus
elements from the guts e-book [24]. Chapter 6 contains parts of the second chapter
of my PhD thesis (also available from Leanpub at https://leanpub.com/jager_phd_
thesis). Chapters 6 and 7 both borrowed from the guts e-book [24] and the `debtox
revisions' [18, 19]. As you see, quite a bit of recycling went into the development of
this book. Nevertheless, I think it is good to have all this information together in a
concise and consistent form. Over time, I will attempt to add more topics and polish
the contents.

In this book, I present the basic principles of modelling, and the bare essentials
from mathematics and statistics that you need to get started with building and ap-
plying simple models. I am writing from the perspective of toxicokinetic (tk) and
toxicokinetic-toxicodynamic (tktd) modelling in ecotoxicology, but these basics are
applicable to many other scienti�c �elds as well. Furthermore, I am speci�cally writing
about models as tools to answer (applied) scienti�c questions. I am not so much inter-
ested in modelling for the sake of modelling. For me, models are the quantitative tools
that make ideas (or theory) applicable to real-world questions. Therefore, this book
is not just about mathematics (though there will be equations). It contains elements
from philosophy of science, and the intellectual challenge of simplifying real-world com-
plexity into a more manageable representation. Furthermore, statistics will be treated
alongside the process models, whereas these topics are usually kept well separated in
textbooks and teaching. As soon as we want to compare our model to data, we in-
evitably have to deal with statistics, so a statistical background is essential for practical
modelling.

All of these elements are treated in a somewhat cursory and highly selective manner.
I am focussing on the essential things that you need to get started with tk and tktd

modelling. I am hoping that this book is useful for readers that only have a very
limited background in applied modelling, mathematics and statistics. However, practice
teaches that reading a book (or watching on-line tutorials) is no substitute for a proper
education. Therefore, I think this book works best as a `refresher' for those that
had math (especially di�erential equations) and stats (probability distributions and
likelihood) in their education, but forgot most of it and/or are not too con�dent to

http://www.debtox.info/dynmodtox.html
https://leanpub.com/jager_phd_thesis
https://leanpub.com/jager_phd_thesis
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apply it. It could also serve as a starter, to set you up for more technical books or
(on-line) courses.

I tried to write this book without speci�c models or modelling approaches in mind.
However, it is inevitable that I have introduced a bias towards relatively simple com-
partment models for tk, and the generic guts and deb-based models for td (specif-
ically in Chapters 6 and 7). This is not to criticise other modelling approaches, or to
downplay their usefulness or importance; it merely re�ects the areas where I have most
experience and interest.

A proper understanding of (simple) di�erential equations is essential for tk and
tktd modelling. That is why I will spend an entire chapter to properly familiarise
the reader with this concept. However, I assume that you are familiar enough with
mathematical functions, powers and logarithms, derivatives and integration, and basic
probability distributions such as the binomial and the normal. These concepts will
not be explained in this book. The content of the chapters on likelihood functions
and parameter hyperspace is probably new to most readers. Courses and textbooks
on statistics seldom deal with this topic (in my experience, statistics is mostly taught
from the perspective of hypothesis testing, which at best provides the correct answer
to uninteresting questions). Therefore, don't worry if these chapters seem rather ab-
stract on �rst reading. Applying these concepts in practice will be helpful to properly
understand them.

Thanks

I would like to thank my former colleagues at the Department of Theoretical Biology of
the VU University in Amsterdam, and speci�cally Bob Kooi, Bas Kooijman, Jacques
Bedaux and Paul Doucet. Teaching courses with them, and discussing models and
modelling in general, has shaped the thoughts expressed in this book. I furthermore
like to thank Andreas Focks for his feedback on a previous version of the book, which
helped me to sharpen the text.

Warnings

I noticed that some of my e-books are o�ered through other websites, after removal of
the title page (Page ii). Please download this e-book from Leanpub, which is the only
place where it is legitimately o�ered. That will ensure that you have a complete and
correct version, and that you are noti�ed as soon as a new version is available.

The text in this e-book will contain errors and short cuts. If you spot an error or
a short cut that is too short, please let me know and I'll address it in an update. I
cannot accept liability or responsibility for any damage or costs incurred as a result of
these errors or short cuts.



Chapter 1

General modelling principles

1.1 Introduction

A model is a simpli�ed representation of a part of the real world. In the natural
sciences, these models are generally presented in a mathematical form so that their
performance can be evaluated quantitatively. Building models is not an aim in itself,
but rather a means to obtain a deeper understanding of the mechanisms underlying
processes observed in the real world. Without models, it would be impossible to inter-
pret the integrated (often non-linear) e�ect of multiple factors that act on our system of
interest. Furthermore, models are essential to make predictions for untested situations.
In ecotoxicology, this can be useful for the optimal design of experimental work, but
model predictions are particularly bene�cial for a science-based risk assessment. For
example, to evaluate the impacts of releasing a new chemical into the environment, or
to evaluate the e�ectiveness of di�erent mitigation strategies. The usefulness of models
for regulatory purposes is demonstrated in environmental chemistry, as fate models are
an integral part of virtually all frameworks for environmental risk assessment around
the world. These models integrate quantitative knowledge about the transport and
transformation of chemicals. Subsequently, they are used to understand chemical fate
in the environment, and to predict the environmental concentrations (generally over
time and space) from chemical properties and emission scenarios. In this way, fate
models support risk assessments for new chemicals (before they are emitted into the
environment) and new situations (e.g., an oil spill in a particular location). Even though
a model is always a simpli�cation of reality, and therefore always `wrong', modelling
should be an integral part of our quest to mechanistically understand and e�ectively
manage the world around us.

In ecotoxicology, models are commonly applied to explain the uptake of chemicals
in individual organisms over time (toxicokinetic or tk models). For the interpretation
of toxic e�ects on individuals, hypothesis testing and dose-response curves are tradi-
tionally used. Even though these approaches can be viewed as crude models, there is
no attempt to explain the observed e�ects from underlying principles (the purpose is
to test for signi�cant e�ects, or to interpolate, in a given set of data). Therefore, the
two most important aims of modelling (understanding and prediction) are not served,
and hence such descriptive approaches are not addressed in this book. More mecha-
nistic models for explaining the e�ects on individuals over time (toxicodynamic or td
models) are gaining interest but are not as commonly applied yet in ecotoxicology as



2 General modelling principles

tk models. Ecotoxicological modelling also increasingly takes place at lower levels of
biological organisation (the molecular and cellular level) as well as higher levels (popu-
lations, food chains and ecosystems), but these models are not discussed in this book.
The individual level is a central level of biological organisation for several reasons [17]
but, for ecotoxicologists, the most important ones are twofold: e�ects at lower levels
of organisation are hardly ecologically relevant unless they a�ect the life-history traits
of individuals (i.e., growth, reproduction, survival), and e�ects at higher levels of or-
ganisation ultimately follow from changes in individual life-history traits by toxicant
stress. In ecotoxicology, mechanistic models for toxic e�ects at the individual level are
generally referred to as tktd models, since they link a tk to a td module.

This chapter presents the basic principles of model construction, the evaluation of
their usefulness, and the confrontation to data. The focus is on concepts rather than on
mathematical details; a �rm grasp of the concepts is extremely important for biologists
to be able to read and interpret modelling studies, and also essential before diving
into the mathematics and coding. Furthermore, understanding the concepts is needed
to design experimental tests in such a way that they can contribute to mechanistic
modelling work. In this chapter, the amount of mathematics is therefore restricted to
a minimum, and mainly used to illustrate the general principles. It is written from
the perspective of tk and tktd modelling, though these principles are more generally
applicable to modelling.

1.2 The theoretician's modelling cycle

Before discussing modelling principles, it is good to consider the role of models in
science in a more formal manner. For that purpose, I will borrow the empirical cycle
as proposed by Bas Kooijman [33], shown in Figure 1.1 in a very much simpli�ed form.
This cycle illustrates the interplay between the `abstract world' of theory and modelling
on the right hand side, and the `real world' of experimentation on the left.

Figure 1.1: The empirical cycle from Bas Kooijman [33] (very much simpli�ed).

We always enter the cycle by identifying the scienti�c problem that needs to be
addressed 9the white box in the center of Fig. 1.1). In principle, we never leave the
cycle: no model is ever perfect. When we leave the cycle, that would mean that this
scienti�c problem is no longer relevant. Nevertheless, there will be outputs from the
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cycle, which are not shown as they can occur at various points. For example, by
publishing a consistent model formulation or the results of a validation.

I consider the cycle of Figure 1.1 to be an idealised view. In practice, model de-
velopment and application will seldom �t such a nice, orderly and isolated cycle (see
[23]). However, I do think it that this cycle is important to stress extremely valuable
priciples:

� Models are developed for a speci�c purpose. For the same system, a di�erent
purpose or aim can lead to a very di�erent model. A useful model for purpose A
may be useless for purpose B.

� Useful models follow from mechanistically-inspired simplifying assumptions about
the real world.

� Models should be extensively tested before comparing them to observation (this
is discussed in much more detail in [33]).

� Experimental design should follow from the model.

� Useful models will often contain variables that cannot be directly observed. Link-
ing models to measurements thus requires auxiliary hypotheses.

� Comparing models to observations is not the endpoint of the cycle. The results
always lead to more questions that should lead to new experiments, or rethinking
the model.

1.3 Systems and states

In modelling terms, a `system' is basically a set of interacting components forming a
unity, with boundaries separating it from the rest of the world. In biology, systems
can be individual organisms, but also organs or cells within individuals, or populations
of individuals, or entire ecosystems. For tktd modelling, the individual organism is
the system of choice, because the focus is on the uptake and e�ects of chemicals on
individuals. However, the modelling principles from this chapter will �rst be illustrated
with other systems (such as the lake systems in Chapter 3).

The state of a system is speci�ed by its state variables, relevant properties of the
system that can change (generally over time). For example, the internal concentration
is a state variable in tk models. To predict the future development of a system, we
need to know the current value of the state variables, and their relationships, but we
do not need to know their history. These variables thus fully capture the current state
of the system, at least, as far as deemed necessary given the purpose of the model.
The selection of appropriate state variables is thus a critical step in model design; for
the same system, di�erent research question may well lead to di�erent sets of state
variables.

In general, the change in the state variables over time depends on the current value of
the states. Therefore, dynamic models are generally formulated in the form of Ordinary
Di�erential Equations (ode's): equations where the derivative (the change in a state) is
a function of the value of the state itself. The mathematical basis for ode's is explained
in detail in Chapter 2.
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1.4 The role of assumptions

Modelling does not start with mathematics or code, but with the identi�cation of a
scienti�c problem and the formulation of a research aim. Based on observations of the
system to be modelled (e.g., from the literature), a set of simplifying assumptions is
formulated. To be useful in a scienti�c setting, these assumptions should represent
simpli�cations of the mechanisms that we assume to underlie the behaviour of the
system. Clearly, biological systems are complex, and simplifying this complexity in a
useful manner is a considerable intellectual task.

Models thus follow from simplifying assumptions about (biological) reality; useful
and well-described models follow uniquely from a clear and consistent set of assump-
tions. Unfortunately, models in biology are often presented in the form of equations
only, and it is left to the reader to reconstruct the underlying assumptions that are
made or implied. This unfortunate practice hampers the uptake of models (and their
results) in scienti�c and regulatory settings. Therefore, I will try to make assumptions
explicit for each model that is treated. In recent years, I have tried to set an example
for tktd modelling: in the dedicated e-books on guts [24], debtox [18] and debkiss
[21] you will �nd explicit lists of assumptions.

1.5 Model complexity and the need for generality

Models are simpli�cations of complex systems. However, complex systems do not nec-
essarily require complex models. Model complexity should be closely linked to the
purpose of a model and the information available to parameterise it, and only to a
much lesser extent by the (perceived) complexity of the system itself. Complex models
are di�cult to test (errors might easily go undetected), and require a lot of information
to parameterise. And, more importantly, they will teach us very little about the sys-
tem that we are modelling. The general strategy should thus be to start as simple as
possible and only include more detail if absolutely necessary for the purpose at hand.
Another aspect that should drive model design and model complexity is the degree of
generality that is to be achieved. A model for the e�ects of chemical A on species B
under the set of environmental conditions C could include a lot of detail on A, B, and
C, and might thereby easily become very complex. However, developing a new model
from scratch for each permutation of A, B, and C would be an ine�cient use of time and
resources; furthermore, the models (and their results) would be impossible to compare.
Therefore, there is a lot to be gained by looking at what species and chemicals have in
common, rather than focussing on their unique details. For this reason, I will focus on
generic modelling principles and models here.

In Figure 1.2, I illustrate three distinct strategies for dealing with complexity. These
strategies are discussed in more detail in another e-book [18]. A very similar categori-
sation was used by Hendriks [13], in a plea to focus on simple, parameter-sparse models
for environmental risk assessment. Clearly, for risk assessment purposes, we cannot
construct a new model for each chemical and for each species; we need generic models.
Furthermore, we always need to extrapolate since toxicity tests are performed in the lab-
oratory, under controlled conditions, while we need to say something about the impacts
outside. This leaves the `simple box' strategy as the most promising avenue. However,
that is not to say that the other strategies do not have a role to play. Ultimately, the
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questions that we need to answer dictate the most appropriate modelling strategy. The
most important take-home message is thus that there are di�erent modelling strategies
to consider.

Figure 1.2: Three approaches for dealing with complexity in modelling biological systems.

An important guiding principle in model design is the selection of appropriate scales,
both in terms of space and time. Combining very di�erent scales into one model is
ine�cient and bound to lead to problems. For example, there is little to be gained by
modelling processes at the molecular scale, which play out at the scale of milliseconds
and nanometres, to explain e�ects on the life-history of a multicellular animal (playing
out at a time scale of days to years, and a spatial scale of millimetres to meters).

1.6 Mechanistic vs. descriptive models

The distinction between mechanistic and descriptive models is not entirely straightfor-
ward. In ecotoxicology, dose-response curves and hypothesis testing are clearly descrip-
tive. Such approaches are used to describe the data as they are, and we therefore do
not learn much from their application about the underlying mechanisms. Furthermore,
they do not allow for useful extrapolations beyond the conditions of the experimental
test. For these reasons, summary statistics resulting from descriptive methods (such
as the ecx and noec) have very limited usefulness for science and risk assessment
(see e.g., [39, 14]). A mechanistic model should be able to provide an explanation for
the patterns, which should (at least in principle) provide a platform for extrapolation
beyond the test conditions (e.g., from constant to time-varying exposure, and from ad

libitum to limiting food availability). However, if we go deep enough, all mechanis-
tic models will include descriptive elements, and the powers of extrapolation will have
limitations in practice.


